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Abstract: This paper investigates the existence of long memory in the
volatility of the Mexican stock market. We use a stochastic volatility (sv)
model to derive statistical test for changes in volatility. In this case, esti-
mation is carried out through the Kalman filter (kF) and the improved
quasi-maximum likelihood (1IQML). We also test for both persistence and
long memory by using a long-memory stochastic volatility (LMsV) model,
constructed by including an autoregressive fractionally integrated mov-
ing average (ARFIMA) process in a stochastic volatility scheme. Under this
framework, we work up maximum likelihood spectral estimators and
bootstraped confidence intervals. In the light of the empirical findings,
we develop a Bayesian model for pricing derivative securities with prior
information on long-memory volatility.
Keywords: contingent pricing, econometric modeling.

Resumen: Este trabajo investiga la existencia de memoria de largo plazo
en la volatilidad del mercado bursatil mexicano. Se utiliza un modelo de
volatilidad estocastica (sv) para derivar pruebas estadisticas de cambios en
la volatilidad. En este caso, la estimacion de los parametros se lleva a cabo
a través del Filtro de Kalman (KF) y el método mejorado de cuasi maxima
verosimilitud (1IQML). Asimismo, se prueba la persistenciay la memoria de
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largo plazo utilizando un modelo de volatilidad estocastica de memoria
de largo plazo (LmMsV), el cual se construye incluyendo un proceso auto-
rregresivoy de promedios moviles integrado y fraccionario (ARFIMA) dentro
de un esquema de volatilidad estocastica. Bajo este marco, se trabaja con
los estimadores espectrales de maxima verosimilitud y con intervalos de
confianza generados con la técnica “bootstrap”. Con base en los resultados
empiricos presentados, se desarrolla un modelo Bayesiano para valuar
productos derivados cuando existe informacion a priori sobre volatilidad
con memoria de largo plazo.
Palabras clave: valuacion de productos, modelos econométricos.

1. Introduction

he consideration of prior information, before data is collected, when
pricing contingent claims is not just a sophisticated extension but
an essential issue to be taken into account for the theory and practice
of derivatives. See, for instance, Korn and Wilmott (1996) and Jensen
(2001). In contingent pricing, it is of particular interest to draw infer-
ences about the volatility of the underlying asset on the basis of prior
information.
The most common set-up of the continuous time stochastic volatil-
ity model consists of a geometric Brownian motion correlated with a
mean-reverting Orstein-Uhlenbeck process. This approach for pricing
and hedging derivatives has been widely studied. See, for instance,
Ball and Roma (1994), Heston (1993), Stein and Stein (1991), and
Wiggins (1996). In particular, the stochastic volatility model allows us
to reproduce in a more realistic way asset returns, specially in the
presence of fat tails (Wilmott 1998), asymmetry in the distribution (Fou-
gue, Papanicolaou, and Sircar, 2000), and the smile effect (Hull and
White, 1987). Despite this large body of theoretical advancement, the
time continuous stochastic volatility model does not provide any eco-
nomic intuition on the investor behavior. And, more importantly, there
is a set of empirical regularities (or stylized facts) that are not repro-
duced by the time continuous stochastic volatility model and still need
to be explained. In particular, it is missing a satisfactory explanation
of how investors, ranging from non corporate individual investors to
large trading institution, choose a suitable distribution to model their
expectations on the dynamics of volatility.
The temporal behavior of the stock market volatility has been, for
the last decades, an issue of increasing interest. It is argued that, for
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emerging stock markets, shocks to volatility persist for a very long
time affecting significantly stock prices. The presence of long-memory
volatility in asset returns has important implications for pricing con-
tingent claims in emerging markets.

The growing economic importance of emerging stock markets char-
acterized by singular institutional and regulatory frameworks provi-
des an interesting environment to test for the existence of persistence
and long-memory components in the volatility.! These markets ex-
hibit high (expected) returns as well as high volatility, and very little
is known about the long-term effects of volatility. While the empirical
literature has provided a considerable amount of research on infor-
mation arrival and return volatility dynamics, it is missing a study on
the persistence and long memory in the volatility in Latin American
stock markets. This paper investigates the persistence and long
memory components in the volatility of the Mexican stock market.
Data was obtained from the International Finance Corporation (IFC)
through Bloomberg, and spans from December 1988 to November 1998
yielding a sample size of 515 weekly observations.

Most of the empirical studies of long-memory processes have mainly
concentrated on financial markets producing a large amount of re-
search on the process specification in terms of the second moment (cf.
Hurvich and Soulier, 2001). Ding, Granger and Engle (1993) proposed
a model on the fractional moments, namely, the asymmetric power
ARCH model (A-PARCH). However, this model does not reproduce appro-
priately long-memory characteristics. More recently, Baille, Bollerslev
and Mikkelsen (1996) presented a different approach to extend the
GARCH class to account for long memory, and developed the fraction-
ally integrated GARCH process (FIGARCH) which reproduces long
memory in volatility. Finally, Bollerslev and Mikkelsen (1996) extended
the model to the fractionally integrated exponential GARCH process
(FIEGARCH), which allows for nonsymmetrical shocks in the FIGARCH
scheme.

There is an alternative to the ARCH type modeling that allows the
variance to depend not only on past observations, but also on an underl-
ying stochastic process driving the volatility, such as an autoregressive
process. This model is called stochastic volatility or stochastic vari-
ance (sv) model. The sv model is also known in the literature as the

1 Regarding the institutional and regulatory framework and their effects on volatility for
the Mexican case, see Venegas-Martinez (2001).
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mixture model. Clark (1973) introduced the sv model as a natural
way to model an unobservable variable. In his approach, the asset
market is assumed to be in one of two states: a Walrasian equilibrium
or a transitory equilibrium. As information arrives, heterogeneous
agents reevaluate their desired portfolios and trade until they reach a
new equilibrium. The market therefore goes through a sequence of
equilibria. Clark (1973) models the variance by means of an i.i.d. log-
normal process, finding a better fitting than alternative distributions
such as the Poisson distribution. In a very stimulating paper Breidt,
Crato and de Lima (1998) developed a model for the detection and
estimation of long memory in the stochastic volatility framework
(henceforth Lmsv). This model is constructed by including an
autoregressive fractionally integrated moving average (henceforth
ARFIMA) process in a stochastic volatility scheme sv.

Our plan for testing for persistence and long memory in the vola-
tility of the return rate of the Mexican IFC index has a number of
steps. First, we use stochastic volatility (sv) models, see for instance
Taylor (1986), to describe changes in volatility of the stock returns
over time by treating volatility as an unobserved variable. This ap-
proach is based on treating the logarithmic volatility as a linear sto-
chastic process (more precisely, as an autoregressive model of order
1). The Kalman filter (kF) approach is then used to obtain smoothed
estimates and predictions of the underlying volatility. In this case,
estimation is carried out through the improved quasi-maximum like-
lihood (1QML), suggested by Breidt and Carriquiry (1996). Second, we
test for the existence of a long-memory component in the sv by apply-
ing two traditional tests: 1) the modified rescaled range statistic, sug-
gested by Lo (1991), and 2) the frequency domain analysis, proposed
by Geweke and Porter-Hudak (1983). Third, we use a LMsv model to
test for both persistence and long memory by working up maximum
likelihood spectral estimators, as suggested by Breidt, Crato and De
Lima (1998). Since our sample size (T = 515) is small compared with
those used by Breidt, Crato and De Lima (1998), we used a bootstraped
confidence interval for the parameters.

We find strong empirical evidence of long memory in the volatility
of the Mexican stock market. It is shown that volatility of the Mexi-
can stock market is fractionally integrated, so volatility does not re-
turn to the previous mean after the occurrence of an exogenous shock.
In section 3, we shall find that the long-memory parameter value is
below a threshold value %2 in the statistical test. In the light of our
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empirical findings, it is necessary to account for a satisfactory expla-
nation of how investors incorporate in their expectations the long-
term dynamics of volatility when making financial decisions. After
all, agents should be able to catch up persistent volatility sooner o
latter. In this paper, we develop a new Bayesian method to price de-
rivative securities when there is prior information on long-memory
volatility in terms of expected values of levels and rates, i.e., in terms
of expectations on the potential level of volatility and on the rate at
which volatility changes. In our proposal, investors are rational and
use, efficiently, all prior information by maximizing an information
measure on the set of all admissible prior distributions. After all, the
core of finance theory (mathematical or empirical) is the study of
the behavior of economic agents in an uncertain environment.

The paper is organized as follows. In the next section, we briefly
review the stochastic volatility (sv) model, the fractionally integrated
(ARFIMA) model, and the long-memory stochastic volatility (LMsV)
model. In section 3, we report our empirical findings on the basis of
the sv, ARFIMA, and LMSV models. In section 4, we state the Bayesian
approach to prior information. In section 5, we develop a Bayesian model
to price derivative securities with prior information on long-memory
volatility. We also examine some asymptotic and polynomial approxi-
mations and their implications in valuing contingent claims. Finally,
in section 6, we present conclusions, acknowledge limitations, and make
suggestions for further research.

2. Review of Econometric Modeling of Information Arrivals
and Volatility Dynamics

Modeling volatility as a stochastic process is a complex issue. In the
real world, volatility is not an observable variable and there is not a
generally accepted stochastic volatility model. One of the most wide-
spread set-up of the stochastic volatility model (see, for instance, Tay-
lor, 1986), expresses the stochastic variance as:

Y, =sX., s,=Vexp(h,/2), t=12..,T, (1)
where h, follows an AR(1) process:
h,=j h._, +h, h, ~i.i.d. N(0,s?). 2
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Here, Vis a constant, and x, and h, are assumed to be independent
processes. If the autoregressive parameter j lies in (=1.1), then (2)
becomes a stationary process. If x, and h, are independent Gaussian
white noises with variances 1 and sz, respectively, the scheme in (1)-
(2) is known as the log-normal sv model. One interpretation of the
log-volatility at time t, h,, is that it represents the random flow of new
information. The parameter Vplays the role of a constant scaling fac-
tor and can be thought of as the modal instantaneous volatility, j is
the persistence in the volatility, and s stands for the volatility of the
log-volatility.

Although the above model is quite simple, it is capable of repre-
senting a wide range of behaviors for volatility. Like the ARCH models,
the sv model can give rise to high persistence in volatility. One of the
inconveniences of using sv models is that unlike the ARCH models, it
is difficult to write down the exact likelihood function. However, they
do have other compensating useful statistical attractions, for instance,
the model can be expressed in a linear state-space form. Some ap-
proaches for estimation in the sv model are: 1) the quasi-maximum
likelihood (QML) suggested by Nelson (1988), and Harvey, Ruiz and
Shephard (1994); 2) the hierarchical Bayesian approach proposed by
Jacquier, Polson and Rossi (1994); and 3) the improved quasi-maxi-
mum likelihood (1gML) approach presented by Breidt and Carriquiry
(21996). It is worthwhile to remark that in the QML approach, the non-
linear stochastic volatility model is linearized and the resulting linear
state-space model is treated as Gaussian. Nelson (1988), Harvey, Ruiz
and Shephard (1994) employed approximate linear filtering methods
to produce a quasi-maximum likelihood estimator, and pointed out
that the accuracy of the normality approximation used in the filtering
approach will worsen as the variance decreases. Notice that the trans-
formation from sv models into state-space models cannot be carried out
with observations close to zero. Indeed, the result from the transfor-
mation becomes suspicious whenever applied to inliers.

Under the Bayesian framework, Jacquier, Polson and Rossi (1994)
proposed a hierarchical method. The main characteristic of their
method is its performance in parameter estimation and smoothing in
sv models by relying on the appropriate marginal posterior distribu-
tions. These authors use a Markov chain Monte Carlo (Mmcmc) method
and through sampling experiments showed that their estimates per-
formed well relative to the QML approach. On the other hand, follow-
ing a suggestion from Fuller (1996), Breidt and Carriquiry (1996) have

108



Pricing Derivates Securities with Prior Information on Long-Memory \olatility

modified the log(y?) transformation to reduce the sensitivity of the
estimation procedure to inliers. Their proposal consists of applying a
linear transformation to shifted values of the observations, where the
shift is determined by the slope of the tangent line to the transforma-
tion. In this regard, Breidt and Carriquiry (1996) carried out a sam-
pling experiment similar to that of Jacquier, Polson and Rossi and
showed that their approach significantly improved the performance
of the usual QML estimators. For most of the true parameter values in
the simulation exercise their improved QML (IQML) estimators per-
form as well as the Bayesian estimators in terms of bias. The QML
estimators have, however, a higher root mean square error (RMSE) than
the Bayesian estimators.

2.1. The Quasi-Maximum Likelihood (gmL) Estimator
Following Nelson (1988) and Harvey and Shephard (1993), after trans-

forming y, by taking logarithm of the square of y,, the following state-
space model is obtained:

log y? = logV* + E[log(x)] + h; + & 3)
=m+h +eg
where
he=jh._,+h, t=12,.T. (4)

Here, the disturbance term satisfies e, = log(x?) — E[log(x?)]. In this
case, g ~ i.i.d., and its statistical properties depend upon the distribu-
tion of x,. If x, ~i.i.d. N(0,1) it can be shown, according to the results in
Bartlett and Kendall (1946), that the mean and variance of log(x?) are
E[log(x?)] =-1.27 and sZ = p?/2, respectively. Also, it can be shown that
the skweness and the kurtosis are —1.5351 and 4, respectively. Nelson
(1988) pointed out that under transformation (3), the model (1) — (2) is
easier to analyze. For instance, if the {g} are non-Gaussian, the Kalman
filter (kF) can still be used to produce the best linear unbiased estima-
tor of h, given the logarithms of the squared previous returns. Fur-
thermore, the smoother provides the best linear unbiased estimator.
The parameters can be estimated following the suggestion of Harvey,
Ruiz and Shephard (1994) using the following quasi log-likelihood

109



Alejandro Islas Camargo and Francisco Venegas Martinez

T 19 14
log{L(b, y)} =- --log(2p)- Za logf, - Sa (n; /1), (5)
2 2 2

where b is the parameter to be estimated; n, is the one-step-ahead
prediction error; and f, is the corresponding mean squared error from
the Kalman filter. If (4) is a Gaussian state-space model, then (5) be-
comes the exact likelihood; otherwise (5) is called the quasi-likelihood
and can be still used to provide a consistent estimator b.

2.2. The Improved Quasi-Maximum Likelihood (1omL) Estimator

In transforming a stochastic volatility model into a state-space form,
some problems arise when observations are close to zero since the
transformation becomes suspicious whenever applied to inliers. Sev-
eral remedies have been proposed to accommodate inliers. Breidt and
Carriquiry (1996) modified the logarithmic transformation by evalu-
ating not at the possibly zero measurement, but at a small enough
shift, and then extrapolating linearly. Thus, in the stochastic volatil-
ity context, Breidt and Carriquiry obtained the robustified transfor-
mation, x; given by

X =log(y? +d$?)- (y? +d§?)'d§?
=logs? +log(x? +d§2s;%) - (x2 +d§2s;2) ' d§?%s;? (6)
=ﬁ+m+§
where
m =log(\?) + E[log(x? +d§?s;?) - (s2 +d§2s;2) "d§%s;?]
and
e, =log(x? +d$%s;%) - (x2 +d§%s;%) 'd§%s;? - m =log(\P).

Here, d is some (small) constant, and 52 is the sample mean of y2
Breidt and Carriquiry (1996) reported a value of d=0.005 as the small-
est value for which the excess kurtosis of {€]} was near zero for a wide
range of parameter values. This value of d also reduces substantially
the skewness of {€;}. These authors also reported that the variance of
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{€3} is no longer p?/2 when x, is Gaussian and suggested that the vari-
ance of {€} be treated as a free parameter and estimated from the
data. This transformation reduces the sensitivity of the estimation
procedure to small values of y,. It is worthwhile to mention that Breidt
and Carriquiry’s (1996) 1IQML estimators have a better performance
than that of the QML estimators when dealing with small samples.

2.3. Persistence and long memory

Most of the recent empirical investigation of conditional variance
models has suggested that stock markets volatility may display a type
of long-range persistence. As we mentioned above, this type of persis-
tence cannot be appropriately modeled with traditional ARCH models.
The same limitation applies to sv models in their standard formula-
tion. A lot of observed time series, although satisfying the assumption
of stationarity, seem to exhibit a dependence between distant obser-
vations that, although small, is by no means negligible. This may be
characterized as a tendency for large values to be followed by larger
values of the same sign in such a way that the series seem to go through
a succession of cycles, including long cycles whose length is compa-
rable with the total sample size. This point of view has persuasively
been argued by Mandelbrot (1969, 1972) in considering non-Gaussian
distributions to explore the structure of serial dependence in economic
time series. These findings show that market volatility displays per-
sistent features, but since both GARCH and the sv models in their stan-
dard formulation are short memory models, the only way to reproduce
persistence is by approximating a unit root. Empirical evidence that
this persistence in stock market volatility can be characterized as long
memory has been presented in recent research by Breidt, Crato and
de Lima (1998). These authors constructed a long memory stochastic
volatility model (LmMsvM) by including an autoregressive fractionally
integrated moving average (ARFIMA) process in a stochastic volatility
scheme sv. In other words, h, is generated by a fractional noise:

@- L%, =h,, h,~NIDN(,s?), O0£d£1l. 7

Like the AR(1) model in (4), this process reduces to white noise at
the boundary of the parameter space, thatisatd =0 and d = 1. How-
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ever, model (7) becomes stationary when d < %. Thus, the transition
from stationarity to non-stationarity proceeds in a different way to
that of the AR(1) model in (4). A negative value of d is quite legitimate.
Indeed, when h, is non-stationary, the first difference of h, provides a
stationary intermediate memory process when %2 = d = 0. More gen-
erally, h, can be modeled as an ARFIMA (p,d,q) defined as follows:

1- L)*F(L)h, =Q(L)h,, h, ~NID N(0,s?). (8)

For aLMsv model, the QML estimation in the time domain becomes
less attractive because the state-space model can only be used by ex-
pressing h, as an AR or MA process and truncating at a suitably high
lag. As an alternative, a frequency domain solution has been provided
by Breidt, Crato and De Lima (1998) in the following way. The spectral
density of (3), assuming that h, is generated by (8), is given by

szlbe™)P s?
f,(1)= n e tos. - PEI£p, 9
T opl- e T PIFE )P 2p ®)

Where bz(d,Sﬁ,Sg,j 1!j 2’---’j pvqlqu’-"!qq)q: The frequency domain
guasi-likelihood function is

[TJ/2]
log{L(0)} =2pT "+ q log{f,(I ) +[1+(1 )/ %,(1 )} (10)
k=1
where [‘] denotes the integer part, | = 2pk/T, is the k™" Fourier fre-
quency, and I (I ) is the kth normalized periodogram ordinate. By maxi-
mizing (10), Breidt, Crato, and De Lima (1998) find strong consistent
estimators of b.

3. Empirical Analysis of Information Arrivals
and Stock Return Volatility Dynamics

Empirical evidence shows that while financial variables such as stock
returns are serially uncorrelated over time, their squares are not.
Therefore, in order to check for the appropriateness of long memory
component in the sv model, we will use a volatility proxy, namely, the
logarithm of the squared returns.
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Table 1. 1IoML estimator of the sv model

Persistence Wolatility Scaling factor
i of the log-volatility sg Y,
0.954 0.063 0.787
(0.002) (0.002)

3.1. The 1ML Estimates of sv Models

In Clark’s (1973) model, the asset market is assumed to be in one of
two states: Walraisan equilibrium or a transitory equilibrium. Each
time information arrives, the market reaches a new equilibrium. There-
fore, according to Granger (1980), the stock price index (which involves
heterogeneous dynamic relationships at the individual level that are
then aggregated to form a time series) will be fractionally integrated
and obey long memory. A long memory time series model is one hav-
ing spectrum of order | -2d for small frequencies | , d > 0. These models
have infinite variance for d = %2, but finite variance for d < %. Thus,
if different sets of heterogeneous agents reevaluate their desired port-
folios and trade until they reach a new equilibrium, aggregating those
individuals will produce fractional integration. One might expect that
more restricted financial markets will generate homogeneous agents,
while the least restricted financial markets will generate heteroge-
neous agents. Therefore, we expect that the least restricted financial
markets will be characterized by a larger degree of persistence and
long memory component in volatility than restricted markets.

We apply now the 1IQML estimation method to Mexican stock mar-
ket index. The empirical analysis is carried out with the series of the
first difference of the logarithms of the squared return rate. For con-
venience, the rate of return has been corrected by their sample means.
Table 1 shows the 1QML estimates of the parameters V, j , and s?. Val-
ues of j close to one indicate considerable persistence in log-volatility.
We observe that the estimate of the autoregressive parameter, | , is
0.954, implying a high degree persistence of the log-volatility.

The 1QML estimation of the sv model via the KF provides smoothed
and filter estimates of the variance component. The smoothed estima-
tor, known simply as the smoother, is based on more information than
the filtered estimator, and so it will have a mean square error (MSE)
matrix which, in general, is smaller than that of the filtered estima-
tor. Figure 1(a,b) shows the graph of the absolute value of the returns
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Figure 1. Long-memory in the volatility on Mexico stock returns
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and the resulting filtered and smoothed estimates of the volatility.
These graphs show the expected feature of the filtered volatility lagging
the smoothed volatility. Also, we notice that the smoothed estimate
of the log-volatility for Mexico shows the behavior of a time series
with a permanent component typical of a long memory time series. It
is well known that the section of the spectrum of most interest in
economic analysis is the low-frequency range, within which the long-
run component is concentrated. Unfortunately, this range is the most
difficult to deal with, and any trend in the series will give the zero
frequency bands a large value. Finally, Figure 1(c,d) shows the perio-
diogram and the parametric estimates of the spectrum of stock market
volatility. As we can see, all spectra have a shape typical of an econo-
mic variable (see Granger, 1966).
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3.2. Testing for Long Memory in \Volatility

Fractionally integrated models have received great attention because
of their ability to produce a natural and flexible characterization of
the persistence process. In the general ARFIMA model given in (8), the
fractional differentiation operator (1 — L)d can be expressed as a bi-
nomial expansion. The process would be stationary and invertible if
-2 <d <%. In case that d # 0, the ARFIMA model displays a substan-
tial dependence between distant observations. Indeed, as time between
observations increases, the ARFIMA autocorrelations decline at a very
slow hyperbolic rate. In contrast, the ARMA autocorrelation declines at
an exponential rate.

Why fractional integration instead of testing for unit roots? Frac-
tional integration addresses a shortcoming that commonly used ARIMA
models have with modeling the degree and type of persistence in a
time series. ARIMA models have three parameters: p, d, and q. The
parameter corresponding to the number of lags involved in the auto-
regressive portion of the time series is p. The parameter for the mov-
ing average lags is g. Finally, d is a dichotomous variable indicating
whether the series is integrated or not. If the series is integrated, d
takes a value 1. Otherwise, d equals 0, and the model is referred as an
ARMA model. ARFIMA models allow d to take any value, not just O or 1,
d is a real number. Instead of being forced into modeling data as ei-
ther stationary, that is, 1(0) or as integrated, that is I1(1), we are more
accurately model the dynamics of the series with fractional integra-
tion, I(d), where d can still 0 or 1, but any fraction as well. If data are
stationary, external shocks can have a short-term impact, but little
long-term effects, as the data revert to the means of the series at an
exponential rate. In contrast, integrated data do no decay, that is, do
not return to the previous mean after an external shock has been felt.
ARIMA models do not account for the possibility that data can be mean
reverting while still exhibiting effects of shocks long since passed. By
allowing d to take fractional values, we allow data to be mean revert-
ing and to still have long memory in the process.

Geweke and Porter-Hudak (1983) propose a semi non-parametric
method for estimating d using the oLs regression based on the
periodogram. The significance of the fractional integration, d, is indi-
cated by the standard t-statistics. One of the advantages to use this
frequency domain regression method is that it allows the estimation
of d without knowledge of p and q in the ARFIMA(p,d,q) model. The
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Table 2. Results of the Spectral tests

au =050 au =0.55 au = 0.60 j(T,O) j\(T:q*)
0.433 0.571 0.303 0.660 0.634
(0.046) (0.004) (0.027) (0.000)

Results of the spectral tests and the R/S analysis: The integration parameter d is estimated
with lower truncation at m_=[T® 17] and different upper truncations m, = [TY], u = 0.50, 0.55,

0.60. The modified Hurts statlstlcs J (T,q), are estimated with q =0, and g = g*. The latter is the
value chosen by Andrew’s data-dependent formula. Unilateral test p—values for d and for the
modified rescaled range statistic are displayed within parentheses.

other statistic used to test for long memory is the modified rescaled
range statistic,2 suggested by Lo (1991). In this case, if only short
memory is presented, the modified rescaled range statistics,® denoted
here by J (T,q), converges to %. If long memory is present, then J (T,q)
converges to a value larger than %. The first three columns of Table 2
report the results of the spectral regression tests. These three col-
umns show the estimate of the parameter d with its corresponding p-
value for the null hypothesis. This choice is made according to the
suggestion in Geweke and Porter-Hundak’s (1983) work. Finally, no-
tice that the estimates of the order of fractional integration are quite
robust across the variation in u.

The values of the estimate of the parameter d are significantly
different from zero. This indicates long memory for the stock market
volatility of Mexico. The last two columns of Table 2 report the esti-
mates of J(T g), the modified rescaled range, and J(T g*), modified
rescaled range computed with Andrews’ (1991) data-dependent for-
mula. Values for both estimates, J(T g) and J(T g*) are significantly
different from %2, indicating long memory in the stock market volatil-
ity. These findings suggest that volatility in the Mexican stock is frac-
tionally integrated, which implies that volatility does not return to its
previous mean after the occurrence of an external shock.

2 The rescaled range statistic was first introduced by Hurst (1951) in studying long-term
storage capacity of reservoirs.

3 For details and explicit formulas of the modified rescaled range statistic, we direct the
reader to Lo (1991).
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Table 3. Spectral Likelihood Estimator

Persistence Wolatility Fractional integration
j of the log-volatility sg parameter d
0.953 0.094 0.257
(0.089) (0.116) (0.631)
(0.762, 1.053) (0.001, 0.251) (0.179, 0.598)

Values in the table represent the maximum likelihood spectral estimator for s, d, and j
assuming g, to be normally distributed.

Standard deviation are given in parentheses.

Bootstraped confident intervals are also provided.

3.3. Long-Memory Stochastic Volatility (LMsv) Model

We now test for long memory by using the long-memory stochastic
volatility (LMsv) model suggested by Breidt, Crato, and De Lima (1998).
This approach to testing for long memory provides a feasible frequency
domain likelihood estimator for the parameters in the LMsv model. In
this case, the returns y, are modeled as

Ye=h + &

where g ~ i.i.d. N(O, s?2). Here, g and h, are supposed to be indepen-
dent, and h, follows an ARFIMA(1,d,0) process as defined in (8). The
spectral likelihood for the y,'s is formulated in equation (10). In this
case, assuming e, normally distributed, the resulting likelihood is
maximized with respect to d and j . Table 3 reports the maximum
likelihood spectral estimators for s2, d, and j . The estimate of the
autoregressive parameter, j , with a value 0.953, indicates persistence
in the log-volatility in the Mexican market stock. The estimate of the
parameter d lies in 0 < d < %%, suggesting that the log-volatility has
long-term persistence. Moreover, the autocorrelation of the log-vola-
tility are positive and decay monotonically and hyperbolically to zero
as the lag increases. The spectral density of the log-volatility is shown
in Figure 1(d). The spectral density is concentrated at low frequen-
cies: f (1) is a decreasing function of | and f,(1)® ¥ as| ® 0, and
f(1') is integrable. Hence, the spectrum as a whole has a shape typical
of an economic variable (see Granger, 1966).

Finally, it is important to point out that Breidt, Crato and De Lima
(1998) reported that maximum likelihood estimation in the spectral
domain perform well for relatively large samples (T =4 096), while the
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performance for small samples (T = 1 024) may produce large outliers
in the estimation of j , s, and d. Since our sample size (T = 515) is
small compared with those used by Breidt, Crato and De Lima (1998),
we used a Bootstraped confidence interval for our parameter estimates.
Indeed, Breidt et al. (1988, p. 339) present the finite sample proper-
ties of the spectral likelihood estimator. In their simulation study of
the finite sample properties of the spectral likelihood estimator they
consider two different sample sizes (T =1 024 and T =4 096). Breidt et
al. reported that maximum likelihood estimation in the spectral do-
main perform well for relatively large samples (T = 4 096), while the
performance for small samples (T = 1 024) may produce large outliers
in the estimation of the parameters.

As a consequence of the empirical findings, it is important to de-
velop a model for pricing and hedging derivative securities with prior
information on volatility that account for information arrivals and
volatility persistence. The model should provide a satisfactory expla-
nation of how investors incorporate in their expectations the long-
term behavior of volatility when making financial decisions. In the
next two sections, we develop a Bayesian method to price and hedge
derivative securities when there is prior information on long-memory
volatility in terms of expected values of levels and rates. In our pro-
posal, investors are rational and use, efficiently, all prior information
by maximizing Jaynes’ information measure.

4. The Bayesian Approach to Prior Information

In the real world, volatility is neither constant nor directly observed.
Hence, it is natural to think of volatility as a random variable with
some initial knowledge coming from practical experience and under-
standing. This is just the Bayesian way of thinking about prior infor-
mation. Under this approach, prior information is described in terms
of a probability distribution (subjective beliefs) of the potential values of
volatility being true. In this regard, in Bayesian inference instead
of studying volatility, s2 > 0, it is common to study precision, which is
defined as the inverse of the variance, h = s—2; see, for instance, Leonard
and Hsu (1999), and Berger (1985). Thus, the lower the variance, the
higher the precision. More precisely, from the Bayesian point of view,
we have a distribution, P,,, h >0, describing prior information. We will
assume that P,, is absolutely continuous with respect to the Lebesgue
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measure v, so that the Radon-Nykodim derivative provides a prior
density, p(h): i.e., dP,/dn(h) = p(h) for all h > 0, so

P{hT A}=¢) p(h)dn(h)

for all Borel sets A.

4.1. Maximum Entropy Priors

There are several well-known methods reported in the Bayesian lit-
erature to construct densities that incorporate prior information by
maximizing a criterion functional subject to a set of constraints in
terms of expected values. Some of them are non-informative priors
(Jeffreys, 1961), maximal data information priors (Zellner, 1977), maxi-
mum entropy priors (Jaynes 1968), minimum cross-entropy priors*
(Kullback, 1956), reference priors (Good 1969, and Bernardo 1979),
and controlled priors (Venegas-Martinez, De Alba, and Ordorica-Me-
llado, 1999). We will specialize in this paper in Jaynes’ maximum entropy
for pragmatic and theoretical reasons that will appear later.

If volatility is persistent, agents will learn in the long run about
the likelihood of potential patterns of volatility. Let us suppose that
there is information on long-memory volatility in terms of expected
values. Specifically, suppose that information on long-memory preci-
sion is given by

C‘Pk(h) P(h) Insgy dv(h) =g, k=0,1,2,..., N, (11)

where the functions a,(h) are Lebesgue-measurable known functions
and all the constants g, are known. The function I, ., stands for the
indicator function defined on {h]h > 0}. The maximum entropy prin-
ciple states that among all densities satisfying the given information
(constraints) we should choose the one that maximizes

HIp()]=- q_, In[p(M]p(h) dv(h). (12)

4 Other model that uses this functional criterion in pricing derivative securities is that of
Avellaneda, Levy and Parés (1995), they assume that potential volatility values occur within a
band, more precisely within an open interval.
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We define a,(h) = 1 and g, = 1 to ensure that the solution is indeed
a density. Hence, we are interested in finding p(h) that solves the fol-
lowing variational problem:

Max  H[p(h)]=- ¢_, In[p(h)]p(h) dv(h),
subject to C: () p(h) 150y V(M) =g, k=0,1,2,...,N.

In the sequel, we will assume that the set of the constraints, C,
forms a convex and compact set on p(h) in the topology of L2 ([0, ¥ ],
p(h) dn(h)). Since H[p(h)] is strictly concave in p(h), the solution exists
and is unique. In such a case, the necessary condition for p(h) to be a
maximum is also sufficient. By using standard necessary conditions
derived from calculus of variations (see, for instance, Chiang, 1999),
we found that

I k=1
wherel ,,k=0,1,2,..., N are the Lagrange multipliers associated with
the above variational problem. Such multipliers are to be determined
from C.

p(h) =e™'o expi J | kak<h)g (13)

4.2. Examples of Priors on Long-Memory \olatility

If market volatility is persistent, agents will learn in the long run
about the likelihood of both the potential level of volatility and the
rate at which volatility changes. Let us suppose that there is initial
information on long-memory volatility in terms of expected values.
More specifically, suppose that long-memory information on precision
is given in terms of expected values of levels and rates. That is, prior
knowledge is expressed as

Q)() hp(h)dv(h)=b/a, (14)
and

Q., Inh) p(hydv(h) =j (a)- In(b), (15)
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wherea >0, b >0, j (a) = dGa)/da, and () is the Gamma function.
Notice that for given expected values on levels and rates, equations
(14) and (15) become a nonlinear system in the variables a and b. It
can be easily shown that the Gamma distribution

ha-lbae-bh

Xa)

solves the optimization problem. Another priors of interest could be:

p(h]a,b) = , h>0,a>0 and b>0, (16)

pgﬁ a,b;:T, h>0, a>0, and b>0;

e [} a
" a+(l/2)pna-bh

pae%| a,bg::Zh G(t;e , h>0,a>0, and b>0;

'] a

and

L. P a _ - log(l/h) _
pgogge%g] al,bg:b exp{- be &) In(l/h)}, h>0, a>0, and b>0;
e g a

which stand, respectively, for prior distributions of s2, s, and log(s?).
In any case, the best choice should reflect what has been learned from
data. We will also study these possibilities in the rest of the paper.

5. The Bayesian Valuation Problem

Let us consider a Wiener process W(t), t > 0, defined on some fixed
filtered probability space (W, F, (F)), o, P), and European call option on
an underlying asset whose price S(t) is driven by a geometric Brown-
ian motion accordingly to

dS(t) = rS(t)dt + h=12 S(t) dw/(t),

that is, W(t), t > 0, is defined on a risk neutral probability measure P.
The option is issued at time t, = 0 and matures at date T > 0 with
strike price X. Under the Bayesian framework, we have that the price
at time t, = 0 of the contingent claim when there is information on
long-memory volatility, as expressed in (16), is given by
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¢(0,S(0); X, T.rla,b) =e TEP{E[max(S(T) - X,01S(0)]} (17)
=€ Q>0;i Q>X (S ) X)fS(T)|S(0) (S)dsgp(h)dn(h) )

where
1/2

fsmis)(9) = shzﬁ exp{- (h/2T)[G(s) + (T /2n)]}

and
G(s) = In[se"T/S(0)].
If we assume that the required conditions to apply Fubinis’ theo-
rem are satisfied, then we can guarantee that integrals can be inter-

changed and (17) becomes (most of the formulas and mathematical
details can be found in Gradshteyn and Ryzhik, 1980)

e rTba

sz Q>X[l- (S/X)]J(Sla,b)ds (18)

where

J(s]a,b)= CLO exp{- (h/2T)[G(s) + (T / 2h)]2}ha‘(“2)e'b“ dn(h). (19)

Notice now that (19) can be, in turn, rewritten as
J(sla,b):exp{—G(s)T/2}Q>0exp{— A(s)h - (B/h)}h®* dn(h)

where

2
A(s):%+2bT>0, B=T/8, and d:%+a>0.

In this case, the integral in (19) satisfies
Q. &l (W/2TIG(S) + (T /2h)h®* dnh) = 2(B/ A(s) "2 K,(2VBA®) ) (20)

where K (x), x=24BA(s), is the modified Bessel function of order d
which is the solution of the second-order ordinary differential equa-
tion (see, for instance, Redheffer 1991).

122



Pricing Derivates Securities with Prior Information on Long-Memory \olatility

1 .2 do
y¢+;y¢- g1+73y=0.
]

We also have that K (x) is always positiveand K, (x) ® 0 as x® ¥ .
Equation (20) is of noticeable importance, it says that all information
on long-memory volatility provided by the prior distribution and the
relevant information on the process driving the dynamics of the un-
derlying asset are now contained in K (x).

5.1. Constant Elasticity Instantaneous Variance
Let us assume that the underlying asset evolves according to
dS(t) = rS(t)dt + h=25(t)>2dW(t),

where the elasticity of stock returns variance with respect to the price
equals b — 2. If b = 2 the elasticity is zero and asset prices are lognor-
mally distributed. In this section, we are concerned with the case b < 2.
In this case,

fatmiso (9 = DIBAET )1 e Me+A01, o0 [BAR)
where
d=1/2-b), D=2r/(2-b), B=[DSO)e "’ A(s)=(Ds)*"
and 14(x), x =2hyBA(s), is the modified Bessel function of the first

kind of order d. If we assume that prior distribution is described by a
gamma density, then

De ""b* . 1- 2b91/(4- 2b)
c=—— s- X)[BA(s Z(s]a,b)ds
d/2pT Ga) Q>X( IBAE] 120

where

Z(sla,b)= ) h* exp{- hib+ B + A} 1,(2hVBA(9) )d(h).
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which is related with the non central chi-square density function.
Moreover,

e ) & sk [BA(s)]“"*
fen BA(S))_QOh Gk+1)Gd+k+1)’

Therefore,

- [BA(S)]“"* p
Z(s|a,b)—20h G(k+1)G(d+k+1)Q>°

_ [BAOP! & [BA(S)]“Gla+d+2k+1)
[b+B+AG) & Gk+DEd+k+1)

ha*#*2< exp{- hlb + B + A(s)} d?(h)

which can be used for large enough k.

5.2. Asymptotic Approximations

In this section we find an approximate formula for pricing vanilla
contingent claims. In order to use asymptotic approximations, we have
to make some assumption on the strike price, X. Note first that if the
strike price X is large, then x is large. In such a case, we have

- & 1-4d%0
Ky(X) » Kd<x)=,/2—pxeX§1- %
7]

which in practice performs well. In this case, we have as an estimate
price

¢ = S(0)L, (S(0); T, X, r]a,b)- e ™ X L,(S(0); T, X,r]a,b) (21)

where
. _ b N : drz 2
L, (S(0);T,X,rla,b) = 50 mqexp{ [r+@/2)G(S)HT / AS)) Kd(ZJBA(s))ds,
and
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a

LZ(S(O);T,X,r|a,b):w/;)F

(‘i @/s)exp{- @/ 2)G(S)}T / A(s))*'? kd(zw/ BA(s))ds.

The integrals L, and L, can be approximated with simple proce-
dures in Mathematica 0 MATLAB by using a large enough upper limit
in the integral.® Figure 2 shows the values € as a function of a and b
with S(0) = 42.00, X =41.00,r=0.11 and T = 0.25.

Figure 2. Values of € as a function of a and b

5.3. Polynomial Approximations

Polynomial approximations can be done only for numerical values of
the parameters. We apply the Frobenius’ method to obtain an ap-
proximate polynomial of finite order. Let us consider the particular
case a = 1/2, i.e.,, d = 1, in equation (19). The following polynomial

5 The upper limit of the integral L, and L, are such that when a larger upper limit is used,
the values of L; and L, remain unchanged.
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approximation is based on Frobenius’ method of convergent power-
series expansion:

é . 6 .2k U
K, () » ~exInZ81 )+ ] a8 +en, 0<x£2,  (22)
X8 e2g 2

7

k=0 €<9@ o]

where the coefficients satisfy:

a, =1.000000000, a, =0.15443144, a, =-0.67278579,
a, =-0.18156897, a, =-0.01919402, a, =-0.0110404,
a, = -0.00004686,

and

.2k

u
aelxg + e, O<x££,

és6
1, (x) » Xéé ka_
8o el5e g

where

b, =0.500000000, b, =0.87890594, b, =0.51498869,
b, =0.15084934, b, =0.02658733, b, =0.00301532,
bs =0.00032411,

with e< 8 x 10-°. The complementary polynomial is given by

1, axo § oxg"
K,(X) » —=—Inc==1,(x)+q e.c== + T, x>2, (23)
! Jxe* &2g° ka;o €25

where

e, =1.25331414, e, =0.23498619, e, = - 0.03655620,
e, =0.01504268, e, =-0.00780353, e, =0.00325614,
e, = - 0.00068245,

and
és8 .~k u
L9 »x6Q 9 22e +ra, x>,
8o el5g g 4
where
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Figure 3. Values of ¢© as a function of b

()
35 T

25 1 //

g, =0.39894228, g, =-0.03988024, g, =-0.00362018,
g; =0.00163801, g, =-0.01031555, g5 =0.02282967,
gg =-0.02895312, g, =0.01787654, g, =-0.00420059,

withr <2.2 x 10~. Itis important to point out that K (x) and I4(x) are
linearly independent modified Bessel functions, and hence, they de-
termine a unique solution of Bessel differential equation. If we denote
by K{?(x) the polynomial approximation in (22) and (23), we get from
(21) and (20) the following call option price:

¢®@ =s(0)LL9(S(0); T, X, rla=0.5,b)- e X L(S(0); T, X,rja =0.5,b) .

As before, integrals L®® and L can be approximated by using
simple procedures in Mathematica or MATLAB. Figure 3 shows the
values ¢ as a function of b with a = 0.5, S(0) = 42.00, X = 41.00,
r=0.11and T =0.25.

In the Mexican case, there is not an exchange for trading stock
options and the over-the-counter market on stock options is an incipi-
ent market, so the data is poor in both quantity and quality. Hence, it
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Figure 4. Option Values as a Function of the Strike Price
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is impossible to carry out a reliable empirical analysis to compare
market prices with our theoretical prices. However, we carry out an
interesting numerical experiment. In this experiment, we compare
our pricing approach with two other prices from models available in
the literature. In Figure 4, the case of the classical Black and Scholes’
(1973) price, as a function of the strike price, is considered as a bench-
mark with parameter values S; =100, T =%, r = 0.05, s = 0.2, and is
represented by the continuous line. The Korn and Wilmott's (1996)
price with subjective beliefs on future behavior of stock prices is rep-
resented by the dashed line.® Finally, the doted line shows our price €
with prior information on long-memory volatility consistent with the
parameter values b =17 and a = 0.5.7 Intuitively, and as it should be
expected, prices with initial beliefs on long-memory volatility on lev-
els and rates take into account more information than prices with
only initial beliefs on future levels of stock prices. Therefore, option
prices with prior information on long-memory volatility should be
higher than option prices with only prior information on future prices.
As expected, Black and Scholes prices are smaller than option prices
with prior information.

6 The parameter values in the Korn and Wilmott's (1996) work are m=0.1, a = 0.33, b =
3.33,and g=0.1.

7 We examined, in this experiment, about 800 different combinations of the parameter
values a and b.
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6. Summary and Conclusions

We have investigated the persistence and long-memory characteris-
tics of volatility in the Mexican market stock. There are several methods
to test for long memory, ranging from fully parametric to non-para-
metric approaches. We have used both to investigate the existence of
long memory in the volatility of the Mexican stock market and show
that the results are consistent between them. Moreover, we have seen that
autoregressive fractionally integrated moving average processes al-
low a more flexible modeling of the low-frequency behavior of returns
with important implications for the measurement of long-term vola-
tility.

In the light of our empirical findings, we have developed, in a richer
stochastic environment, a Bayesian procedure to price and hedge
derivative securities when there is prior information on long-memory
volatility. Specifically, this information was expressed in terms of ex-
pectations on the potential level of volatility and on the rate at which
volatility changes. It is important to point out that our theoretical frame-
work led to the modified Bessel functions. By using asymptotic and
polynomial approximations of these functions, we have provided sev-
eral formulas for pricing contingent claims.

The broad message of this paper, although only demonstrated for
the Mexican case, is that shocks to volatility persist for a very long
time affecting significantly stock prices. Hence, hedging strategies of
a long position should be taking into account the long-memory effects
in a short position in a call option. This will certainly provide a more
effective protection against negative effects of long-range persistence
in volatility.

Needless to say, the model is obviously simple and could be ex-
tended in several ways. First, further research should be undertaken
to deal with the case of American options, which are more popular in
derivatives exchanges and over-the-counter markets throughout the
world. Second, additional investigation is needed to include in the
Bayesian pricing formula the probabilistic behavior of the interest
rate; for instance, we might contemplate a term structure driven by a
Markovian diffusion process. Third, one of the limitations of our pro-
posal is that there are no transaction costs and more should be done
in this regard to obtain more realistic and representative pricing for-
mulas. These extensions will lead to more complex market environ-
ments and results will certainly be richer.
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