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Abstract  

To date, the distributive implications of incentive regulation on electricity 
transmission networks have not been explicitly studied in the literature. 
More specifically, the parameters that a regulator might use to achieve 
distributive efficiency under price-cap regulation have not yet been 
identified. To discern these parameters is the motivation for the research 
presented in this paper. We study how different weight parameters affect 
the distributive characteristics of optimal price-cap incentive regulation for 
electricity transmission. We find that a regulator’s use of ideal (Laspeyres) 
weights tends to be more beneficial for the Transco (consumers) than for 
consumers (the Transco).  
 
JEL Classification L50; L51; L94; Q40; Q42. 
Keywords: Electricity transmission; incentive regulation; distributive 
efficiency. 
 

Resumen 

A la fecha, las implicaciones distributivas de la regulación por incentivos 
para la transmisión eléctrica no han sido estudiadas explícitamente en la 
literatura. Mas específicamente, los parámetros que un regulador puede 
usar para alcanzar la eficiencia distributiva bajo la regulación de precios 
máximos no han sido identificados. Discernir estos parámetros es la 
motivación de la investigación presentada en este artículo. Estudiamos 
como diferentes parámetros ponderadores afectan las características 
distributivas de la regulación por incentivos de precio máximo para la 
transmisión eléctrica. Encontramos que el uso por parte del regulador de 
ponderadores ideales (Laspeyres) tiende hacer mas benéfico para la 
Transco (los consumidores) que para los consumidores (la Transco). 

 
Códigos JEL: L50; L51; L94; Q40; Q42. 
Palabras clave: Transmisión eléctrica; regulación por incentivos; eficiencia 
distributiva. 
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Introduction
Electricity transmission is a market that, generally speaking, moves towards

natural-monopoly characteristics that then counteract full market efficiency as well
as optimal social welfare. For this reason, the transmission of electricity requires
oversight through regulation over certain components of the market. On one hand, a
transmission company (Transco) normally has poor incentives to expand the electric
grid due to revenues accruing from short-run congestion rents. On the other hand,
an efficient expansion of the transmission network is crucial for optimal productive
resource allocation and fair market prices. However, an inefficient transmission net-
work poses congestion problems such as as higher final costs of electricity, which has
negative repercussions not only for the electric sector but the wider economy.

In response to this problem, various regulatory mechanisms have been propo-
sed in the literature to promote transmission investment. One such framework is the
Hogan-Rosellón-Vogelsang (HRV) mechanism, described in Hogan et al (2010, HRV).
This structure combines merchant and regulatory approaches to promote investment
in electricity networks. Allocative-efficient transmission investment is incentivized
through intertemporally rebalancing the fixed and variable charges included in the
Transco’s two-part tariff, all within a nodal pricing system employing financial trans-
mission rights (FTRs).

The primary goal here is to create efficient transmission networks that achieve
optimum social welfare, while maximizing Transco revenues so as to incentivize ex-
pansion investment. Without expansion of the network, inefficient networks allow
Transcos to earn congestion rents through higher costs charged to end consumers.
In efficient transmission networks, congestion rents are redistributed favoring the
consumer, allowing for transmission prices to converge down to marginal cost, or
Ramsey pricing. This creates a boon to all economic sectors due to lower realized
energy costs. Transcos are typically unwilling to lower congestion because it affords
them increased revenues, but through an efficient incentive structure Trancos can be
compelled to invest in transmission expansion to their own benefit and to that of
consumers.

However, the distributive implications of incentive regulation on transmission
networks have not been widely studied in the literature. More specifically, the para-
meters that a regulator might use to achieve distributive efficiency have so far not
been explicitly analyzed. This is the motivation for the research presented in this
paper. We analyze how different weight parameters affect the distributive characte-
ristics of the HRV incentive regulatory mechanism, as well as present analytically
the effects of said variables.
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This document is organized as follows. In section 1, we present the HRV model.
Section 2 applies the HRV model to a stylized network in two periods, using both
Laspeyres and ideal weights. In section 3, we present in detail the analytical con-
ditions that characterize the distributive effects of each type of weight. Numerical
examples are also provided. Section 4 concludes with a discussion of our findings.

1. The HRV Model
In the following pages we address the distributive efficiency implications of the

HRV price-cap incentive mechanism which combines price cap regulation and FTRs
with price-taking generators and consumers. The effects of physical constraints on
electricity flows (given by the Kirchhoff laws) are considered as well as the topology
of transmission networks. The HRV model redefines the output of the Transco in
terms of point-to-point transactions given by long-term FTR obligations (LTFTRs).
The Transco chooses variable and fixed charges so as to maximize profits subject
to a price-cap constraint over its two-part tariff, following the regulatory logic in
Vogelsang (2001). The fixed portion of the tariff can be seen as a complementary
charge to recover fixed costs of generation and transmission (as in Rubio-Odériz
and Pérez-Arriaga, 2000). The variable portion actually points to the price of the
FTR based on nodal price differences. While Vogelsang (2001) is in principle only
applicable to radial lines, the HRV mechanism is an upgrade designed to also deal
with meshed transmission networks.

Mathematically, the HRV is a bi-level programming model. The upper level pro-
blem models the Transco’s profit maximization subject to a price-cap constraint that
usually relies upon the use of previous period quantity weights (Laspeyres) or ideal
quantity weights (proposed in Laffont and Tirole, 1996). The lower level problem is
actually a power-flow program where an independent system operator (ISO) maximi-
zes social welfare subject to generation, line-capacity and energy balance constraints
in order to achieve maximal production of and revenue from dispatched electricity
generation.

In the HRV regulatory model, the expansion of the transmission network natu-
rally implies a reduction of the congestion rents accruing to the Transco. The Transco
might compensate such revenue reductions with an increase in the fixed charge por-
tion of its two-part tariff that are constrained by a price cap. As shown in various
applications of the HRV model, such increases in the fixed charge may result in overly
high price levels. Such issues are critical when considering real-world applications.
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1.1. Upper Level

In the upper level of the HRV model, the Transco maximizes its profits subject
to an intertemporal price-cap constraint:

max
k,F

π =
T∑
t

[ A︷ ︸︸ ︷∑
ij

τ tij(k)q
t
ij(k)+

B︷ ︸︸ ︷
F tN t−

C︷ ︸︸ ︷∑
ij

c(ktij)
]
; i 6= j (1)

subject to:∑
ij

τ tij(k)q
w
ij(k) + F tN t ≤ (1 +RPI +X)

[∑
ij

τ t−1
ij (k)qwij(k) + F t−1N t

]
(2)

The objective function (1) of this problem runs over T periods with line capacities
k and fixed charge F as choice variables. It consists of two revenue sources, (A) and
(B), as well as of a cost term, (C). Term (A) represents congestion rents, which
are defined by the FTR point-to-point transactions, qtij, between nodes i and j,
multiplied by the FTR auction price, τ tij. The second term (B) denotes the fixed
fee that is charged to the N users of the transmission network, and the third term,
(C), is the cost c(kijt) faced by the Transco due to the line expansion between nodes
i and j. The regulatory constraint (2) is a cap over the Transco’s two-part tariff
with efficiency X and inflation RPI adjustments. The regulator choses the weights
w in order to promote the convergence of the mechanism to an allocative-efficient
steady state equilibrium (see Vogelsang, 2001). The ability to rebalance the two parts
of the tariff guarantees that the Transco achieves individual rationality during the
expansion of the transmission network, even under decreasing congestion rents.

In order to avoid working explicitly with the profits from the auctions of FTRs,
the program given by (1) and (2) is usually redefined in terms of capacity investment
as a choice variable (as opposed to the variable fee of the two-part tariff) (see Hogan
et al, 2010):

max
k,F

π =
T∑
t

[ I∑
i

(ptid
t
i − ptigti) + F tN t −

I∑
ij

c(ktij)
]

(3)

subject to:
I∑
i

(ptid
w
i − ptigwi ) + F tN t ≤ (1 +RPI +X)

[ I∑
i

(pt−1
i dwi − pt−1

i gwi ) + F t−1N t
]

(4)

In this way, the congestion rents and the regulatory constraint are redefined in
terms of the load cost difference pidi and the generators’costs pigi.
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1.2. Lower Level

The lower level is a social-welfare maximization problem solved by the ISO given
the constraints on generation capacity and energy balance. The market is assumed
to be administered competently and efficiently. The (inverse) demand function p(d)
is linear and the marginal cost of generation mc is constant in each period t. This
in turn guarantees simultaneous technical feasibility of electricity flows as well as
adequate financial revenue (see Hogan, 2013):

max
d,g

W =

I,T∑
i,t

[ ∫ dti

0

p(d̃ti)dd̃
t
i

]
−

I,T∑
i,t

mci g
t
i (5)

subject to:

gti ≤ gt,max
i ∀ i,t (6)

|pf t
ij| ≤ ktij ∀ i,j (7)

gti + qti = dti ∀ i,t (8)

Constraint (6) requries that generation g in node i cannot be greater than the
available maximum generation capacity at that node gmax. Inequality (7) requires
that the energy flow pfij between nodes i and j cannot exceed the limits of transmis-
sion lines kij. Finally, equation (8) demonstrates that demand dti at each node must
be satisfied by local generation gti or by net injections qti .

At each node, net injections are obtained from the sum of power in- and outflows:

qi =
∑
j

pfij (9)

Just as in Rosellón and Weight (2011), power flows are calculated on a direct
current mesh net topology (DC-Load-Flow) using an economically expedient focus.
With such an arrangement one can take into account the differences in voltage angle
between lines as well as the susceptibility and reactivity of each line.

1.3. Related Literature

Rosellón and Weigt (2011) test the HRV mechanism in a simplified network in
Northwest Europe and show that the model provides satisfactory results in practice.
The mechanism approaches the welfare-optimal benchmark, relieves the system from
congestion, and increases the profits of the Transco over time. They also show that
the mechanism might be applied in a relatively easy way at a low cost, since the
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regulator requires only minimal information which is provided by market prices.
Similarly, Rosellón et al (2011) apply the HRV mechanism to the Pennsylvania-New
Jersey-Maryland (PJM) system characterized by high levels of congestion. They show
that the mechanism promotes transmission capacity enhancement in that energy
is transmitted from areas of low generation cost in the west to areas with high
demand and high price in the east. Electricity prices converge to the marginal cost
of generation, congestion rents decrease, and the overall social welfare increases.

Schill et al (2011) study the performance of different regulatory approaches to
electricity transmission expansion in Northwestern Europe under realistic demand
behavior and fluctuating wind-generation. They show that under such conditions the
HRV mechanism provides better welfare results than the other alternatives (which
include cost-of-service regulation as well as a lack of regulation). However, these
results rely on a relatively high fixed charge that turns out to be a great deal more
than congestion-rent losses, allowing a substantial increase in the Transco’s total
profits. That is, the Transco receives the largest welfare gains due to expansion profits,
in comparison to benefits to consumers and generators. They suggest a redistribution
of these benefits by moving from an allocative-efficient solution to one that favors
consumers over the Transco. This could be addressed through an adequate choice of
price weights in the regulatory price-cap constraint.

The distributive problem proposed in the previous paragraph is studied in Laguna
(2012), in which function and demand costs are supposed to be stationary. The
distributive properties of the HRV mechanism are studied in a radial network of
two nodes, in two periods. The effects of the surplus of each agent are isolated and
the users of the network, the generator and the consumer, pay together the fixed
cost of transmission. Their results demonstrate that the surpluses of all agents are
sensitive to several influences: the discount factor of the firm, the maximum price
level, the regulatory restriction weights, and the cost and demand functions. In order
to explicitly observe the sensitivity of the surpluses to such factors, especially to the
weights, a continued simulation analysis is proposed.

Some related literature has demonstrated, however, certain effects of specific
weight mechanisms. There are essentially two ways to regulate price structures: fi-
xed weights (tariff-basket regulation) and variable weights (average-revenue regu-
lation). Within the fixed weights framework, a maximum limit is established for

an I(p) =
N∑
i=1

wipi consisting of prices pi and fixed weights wi. Weights might be

previous period (chained Laspeyres), quantities of output (or throughput), intertem-
porally fixed quantities (fixed Laspeyres), or projected quantities that correspond to
the steady state equilibrium (ideal Laffont-Tirole weights).
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A variable-weight framework allows for more relative price variation because this
form of regulation establishes a cap on income per unit without the use of maximum
limits. Average-revenue regulation allows for greater flexibility in the Transco’s tariff
rebalancing strategy, but then lacks a method to converge to the welfare maximizing
equilibrium. The literature has demonstrated that with a myopic (short-term orien-
ted) profit maximization outlook and under stable (non-stochastic) cost and demand
conditions, a chained Laspeyres index will cause firm prices to converge intertem-
porally to the Ramsey-Boiteaux pricing (Vogelsang 2001; Vogelsang 1989; Bertoletti
and Poletti 1997; Loeb and Magat 1979; and Sibley 1989). This is accomplished by
simultaneously reconciling between social welfare maximization and the individual
rationality of the regulated firm. Social surplus is thereby redistributed to the mono-
poly Transco in such a way that long-run fixed costs are recovered, while consumer
surplus is maximized over time.

We concentrate our analysis on the distributive effects owing to weight preference
in a radial-line two-period model.

2. Application of the HRV Model to a Radial Net-
work

Here we focus on a stylized radial-line topology with a fixed number N of network
users:

Gen Cons

ONMLHIJK1
pf12 //ONMLHIJK2

We assume that node 1 is solely a generation node and that node 2 is purely
a consumption node. Additionally, we suppose a discount factor β in the Transco’s
profit maximization. In this context, the upper and lower levels are specified in 2.1
and 2.3.

2.1. Upper Level Problem

The Transco intertemporally maximizes profits subject to the price-cap regulatory
constraint and to the ISO-optimal choices in the lower-level problem:
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max
k,F

π =
2∑

t=1

βt−1
[
(pt1d

t
1 − pt1gt1) + (pt2d

t
2 − pt2gt2) + F tN − c(kt12)

]
(10)

subject to:

p12d
w1
2 − p11gw1

1 + F 1N ≤ (1 +RPI +X)(p02d
w1
2 − p01gw1

1 + F 0N) (11)
p22d

w2
2 − p21gw2

1 + F 2N ≤ (1 +RPI +X)(p12d
w2
2 − p11gw2

1 + F 1N) (12)

2.2. Solution to Upper Level Problem

The solution can be obtained by rewriting the Transco’s maximization problem
as:

max
k,F

π =
2∑

t=1

βt−1
[
(pt2 − pt1)qt2 + F tN − c(kt12)

]
(13)

subject to:

(p12 − p11)qw1 + F 1N ≤ γ[(p02 − p01)qw1 + F 0N ] (14)
(p22 − p21)qw2 + F 2N ≤ γ[(p12 − p11)qw2 + F 1N ] (15)

where γ = 1 +RPI +X.

Given that the Transco will always choose the highest possible fees, the constraints
are assumed to be met equally. From (14) and (15) one can observe that:

F 1N = γ[(p02 − p01)qw1 + F 0N ]− (p12 − p11)qw1 (16)
F 2N = γ[(p12 − p11)qw2 + F 1N ]− (p22 − p21)qw2

= (γ)2
[
(p02 − p01)qw1 + F 0N

]
+ γ(p12 − p11)(qw2 − qw1)− (p22 − p21)qw2(17)

Substituting the obtained values for F 1N and F 2N into (13), we end up with an
unconstrained maximization problem with choice variables k112 and kt12. The next step
implies choosing different types of weights and substituting the optimal results from
the lower level problem into the Transco’s objective function. We will concentrate
our analysis on Laspeyres (previous-period) weights and ideal weights. The expansion
costs c(·) are specified via the linear function c(kt12) = ecf(kt12 − kt−1

12 ), in which we
assume a constant expansion cost factor ecf ; given that a reduction in line capacity
is quite costly, we assume k112 ≤ k212. That is, we will only allow for expansions in
network capacity. Additionally, so that a network expansion makes economic sense,
we assume q02 ≤ a−mc1

b
.
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2.3. Lower Level Problem

The ISO’s welfare maximization and dispatch optimization problem is:

max
d,g

W =
2∑

t=1

∫ dt2

0

p2(d̃
t
2)dd̃

t
2 −

2∑
t=1

mc1g
t
1 (18)

Subject to the restrictions:

gt1 ≤ gt,max
1 (19)

|pf t
12| ≤ kt12 (20)

gt1 + qt1 = dt1 (21)
gt2 + qt2 = dt2 (22)

With given injections:

qt1 =
∑
j

pf t
1j = pf t

12 (23)

qt2 =
∑
j

pf t
2j = pf t

21 = −pf t
12 (24)

2.4. Solution to Lower Level Problem

The solution to this problem is obtained as follows. Our assumptions imply dt1 = 0
and gt2 = 0, then from (21) and (22)

gt1 = −qt1
dt2 = qt2

Using (23) and (24) we conclude that:

gt1 = dt2 = qt2

Therefore, the problem can be rewritten as:

max
qt2

W =
2∑

t=1

∫ qt2

0

p2(q̃
t
2)dq̃

t
2 −

2∑
t=1

mc1q
t
2 (25)

subject to:

qt2 ≤ gt,max
1 (26)

qt2 ≤ kt12 (27)
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If we further assume that there is enough generation capacity in node 1 and we
explicitly write the inverse linear demand function at node 2 as p2(dt2) = a− bdt2, the
solution to the lower level problem is given by:

qt2(k
t
12) =

{
kt12 if kt12 ≤ a−mc1

b
a−mc1

b
in other case (28)

pt2(k
t
12) =

{
a− bkt12 if kt12 ≤ a−mc1

b

mc1 in other case (29)

pt1 = mc1 (30)

It can be observed that the ISO would like to set qt2 =
a−mc1

b
, but such a decision

will be constrained by transmission capacity kt12. In the following sections, we derive
concrete solutions to these bi-level programming problems and apply either Laspeyres
or ideal weights.

2.5. Laspeyres Weights

The first type of weight that we test is the previous-period Laspeyres weight
given by qw = qt−1. Using the expressions(13) to (17) we can determine the Transco’s
problem of interest. This yields:

max
k112,k

2
12

β(p22−p21)(q22−q12)+(1+βγ)(p12−p11)(q12−q02)−βecf k212−(1−β)ecf k112+π0 (31)

where π0 := (γ + βγ2)[(p02 − p01)q02 + F 0N ] + ecfk012.

In order to solve the complete bi-level problem, we substitute the solution values
obtained from the lower level into the upper level.(The complete derivation can be
found in Appendix A.)

The optimal capacities in the upper level problem are then given by:

k112 =


(a−mc1 + bq02)(1 + βγ)− ecf

2b(1 + βγ)
if q02 > q̂

2(a−mc1 + bq02)βγ − (a−mc− ecf)β + 2(a−mc+ bq02 − ecf)
b(4− β + 4βγ)

in other case

(32)
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k212 =


(a−mc1 + bq02)(1 + βγ)− ecf

2b(1 + βγ)
if q02 > q̂

(3a− 3mc+ bq02 − 2ecf)βγ − (a−mc− ecf)β + 3a− 3mc+ bq20 − 3ecf

b(4− β + 4βγ)
in other case

(33)

where q̂ =
(a−mc1)(1 + βγ)− ecf(1 + 2βγ)

b(1 + βγ)
.

The fixed tariff charges are given by:

F 1N = γ[(p02 − p01)q02 + F 0N ]− (a− bk112 −mc1)q02 (34)

F 2N = (γ)2
[
(p02 − p01)q01 + F 0N

]
+ γ(a− bk112 −mc1)(k112 − q02)− (a− bk212 −mc)k112

(35)

For Laspeyres weights, we then see that in each period the capacity of the line chosen
by the Transco is lower than the capacity preferred by the ISO (a−mc1

b
) (See Appendix

A). In relatively low congested networks (q0 > q̂) the expansion of the network occurs
during the first period. In such a case, a further expansion in the next period is too
costly compared to the extra profits that the Transco might obtain. From (34) and
(35), we observe that the higher the capacities chosen by the Transco, the higher are
its fixed charges.

2.6. Ideal Weights

The second type of weight analyzed is the ideal weight. An ideal weight q∗ is
the level of q that prevails in the steady state Ramsey-pricing equilibrium (as in
Laffont and Tirole, 1996). As suggested in Hogan et al. (2010) and Rosellón and
Weigt (2011), the value of q∗ might be approximated by redefining the lower-level
welfare optimization problem in such a way that the ISO chooses the line capacities
in the whole transmission grid. That is, the ISO centrally minimizes the costs for
expanding the transmission network. In our stylized topology, this solution would
look like:

max
qt2,k

t
12

2∑
t=1

∫ qt2

0

(a− bq̃t2) dq̃t2 −
2∑

t=1

mc1q
t
2 −

2∑
t=1

ecf(kt12 − kt−1
12 ) (36)
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subject to:

qt2 ≤ gt,max
1 t = 1, 2 (37)

qt2 ≤ kt12 t = 1, 2 (38)
k112 ≤ k212. (39)

which has solution:
q∗ =

2(a−mc1)− ecf
2b

. (40)

(Appendix B demonstrates how q∗ is determined specifically.)

Returning to the regulatory problem defined in 3.2, a solution under ideal weights
in the upper level must consider the optimal choices from the lower level. This pro-
blem will take the form:

max
kt12

(p12 − p11)q12 −
(p12)(2a− 2mc1 − ecf)

2b
− ecfk112 + β

(
(p22 − p21)q22 −

−(p22)(2a− 2mc1 − ecf)
2b

− ecf(k212 − k112)

)
+ π∗

0 (41)

where π∗
0 := (γ + βγ2)

[
(p02 − p01)q∗ + F 0N

]
+ ecfk012.

The optimal choices of the Transco are given by:

k112 = k212 =
a−mc1

b
− (3 + β)ecf

4b(1 + β)
(42)

F 1N = γ
[
(p02 − p01)q∗ + F 0N

]
− (a− bk112 −mc1)q∗ (43)

F 2N = (γ)2
[
(p02 − p01)q∗ + F 0N

]
− (a− bk212 −mc1)q∗ (44)

(Appendix C contains the full solution for these problems.)

In this case, when the expansion costs are small the Transco again chooses line
capacities slightly below those that the ISO would prefer. Such capacities do not
depend on the initial congestion of the network. Once more, it may be observed that
the larger capacities in each period are, the larger the fixed charges will be. The
network expansion will take place entirely during the first period.
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3. Distributive Effects of the HRV Mechanism
The welfare converging properties of the HRV mechanism have already been

demonstrated in the literature, but this comes at the cost of high fixed fees. These
fees may pose problems in a real world policy implementation of such an incentive
tool. Rosellón and Weigt (2012) and Schill et al. (2011) suggest that price-weight
parameters in the regulatory constraint in the upper level of the HRV model might
be used to achieve different distributive goals among the various Pareto optimal
potential solutions in such a model.

In this section we will separately address the effects on surpluses of economic
agents as well as on fixed charges, determined by the regulator’s choice of weights.
To simplify the analysis, we will assume that for the initial period (period zero)
the fixed charges are zero, that the firm is myopic (β = 1), and that there are no
efficiency and inflation adjustments (γ = 1).

3.1. Effects on the Transco’s Profits

Transco profits are obtained by substituting the obtained solutions in capacity
values into the profit function of the Transco. The Transco’s profits for the different
types of weights are:

Laspeyres weights:

ecf 2

8b
− (a−mc1 − bq02)ecf

2b
+
−3b2(q02)2 + 2abq02 − 2bmc1q

0
2 + a2 − 2amc1 + (mc1)

2

2b

if q02 > q̂, and

2ecf 2

7b
−5(a−mc1 − bq02)ecf

7b
+
2(−5b2(q02)2 + 3abq02 − 3bmc1q

0
2 + 2a2 − 4amc1 + 2(mc1)

2)

7b

if q02 < q̂.

Ideal weights:

ecf 2

2b
− 2(a−mc1 − bq02)ecf

b
+

2(−abq02 + bmc1q
0
2 + a2 − 2amc1 + (mc1)

2)

b

We now compare these two expressions. If we subtract the profits under ideal
weights from profits under Laspeyres weights, we get:

− 3ecf 2

8b
+

3(a−mc1 − bq02)ecf
2b

− 3(a−mc1 − bq02)2

2b
(45)

12



if q20 > q̂, and

− 3ecf 2

14b
+

9(a−mc1 − bq02)ecf
7b

− 10(a−mc1 − bq02)2

7b
(46)

if q02 < q̂.

We observe that (45) can be rewritten as:

− 3(2a− 2mc1 − 2bq02 − ecf)2

8b
(47)

and the last equation (46) as:

− 3ecf 2

14b
− a−mc1 − bq02

7b

[
10(a−mc1 − bq02)− 9ecf

]
(48)

Additionally, if we remember that q02 < q̂ =
2(a−mc1)− 3ecf

2b
for q02 in (46), we

have:
a−mc1 − bq02 >

3

2
ecf > ecf. (49)

Thus, these two equations are negative expressions. We can therefore conclude that
the Transco obtains higher profits under ideal weights than under Laspeyres weights.

3.2. The Transco’s Fixed Charges

Fixed charges are obtained when optimal capacities are plugged into regulatory
constraints (29) and (30). The sums of the fixed fees that the Transco charges to
consumers over the two analyzed periods, for each type of weight, are given by:

Laspeyres Weights
In this case the weights are:

(a−mc1 − bq02)q02
if q02 > q̂, and

3ecf 2

49b
− (11a− 11mc1 + 24bq02)ecf

49b
+

2(a−mc1 − bq02)(3a− 3mc1 + 25bq02)

49b

if q02 < q̂.
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Ideal Weights
The weights are:

ecf 2

2b
− (2a− 2mc1 − bq02)ecf

b
+

2(a−mc1 − bq02)(a−mc1)
b

.

Subtracting the fixed charges under ideal weights from those under Laspeyres weights,
we obtain:

− (a−mc1 − bq02 − ecf)(3a− 3mc+ bq02 − ecf)
4b

(50)

if q02 > q̂, and

− 43ecf 2

98b
+

(87a− 87mc1 − 73bq02)ecf

49b
− (a−mc1 − bq02)(92a− 92mc1 − 50bq02)

49b
(51)

if q02 < q̂.

In general, expression (50) may be either positive or negative, but for relatively
low values of ecf the expression becomes negative. Regarding (51), it can be shown
that this term is negative. We know that the variables in (51) satisfy q02 < q̂, so using
the logic of the previous solution, we get:

a−mc1 − bq02 > ecf, (52)

which implies:

92(a−mc1)− 50bq02 > 42bq02
87(a−mc1)− 73bq02 > 14bq02,

Subtracting the first inequality from the second, we get:[
92(a−mc1)− 50bq02

]
−
[
87(a−mc1)− 73bq02

]
> 28bq02 > 0

then [
92(a−mc1)− 50bq02

]
>
[
87(a−mc1)− 73bq02

]
Finally, from (52) we have:

(a−mc1 − bq02)(92a− 92mc1 − 50bq02)

49b
>

(87a− 87mc1 − 73bq02)ecf

49b

14



Therefore, we conclude that (51) is negative.

The results in subsection 4.2 then tell us that within a congested network (small
q02) or with low expansion costs (small ecf), the use of ideal weights will result in
higher fixed charges as when Laspeyres weights are used in the regulatory constraint.

3.3. Consumer Surplus

From previous developments in above sections, we know that qt2 = kt2 and pt2 =

(a− bkt12), with kt12 6 (a−mc1)
b

.

Therefore total consumer surplus in the two periods is given by:

2∑
t=1

[ ∫ kt12

0

(a− bk)dk − (a− bkt12)kt12
]

=
2∑

t=1

[
akt12 − b

(kt12)
2

2
− (a− bkt12)kt12

]
=

2∑
t=1

b
(kt12)

2

2

=
b((k112)

2 + (k212)
2)

2
(53)

Laspeyres Weights

(a−mc1 + bq02)
2

4b

if q20 > q̂, and

17ecf 2

98b
− (23a− 23mc1 + 12bq02)ecf

49b
+

17(a−mc1)2 + 22bq02(a−mc1) + 10b2(q02)
2

49b

if q20 < q̂.

Ideal Weights
The surplus is given by:

b

(
a−mc1

b
− ecf

2b

)2

.

We now again subtract the consumer surplus under ideal weights from the consumer

15



surplus under Laspeyres weights:

− (3a− 3mc1 − ecf + bq02)(a−mc1 − ecf − bq02)
4b

(54)

if q02 > q̂, and

− 15ecf 2

196b
+

2(13a− 13mc1 − 6bq02)ecf

49b
− 2(a−mc1 − bq02)(16a− 16mc1 + 5bq02)

49b
(55)

if q0 < q̂.

We can now observe that (54) is negative. For sufficiently low values of ecf , the
expression becomes negative. Meanwhile, expression (55) is always negative, since:

16(a−mc1) + 5bq02 > 13(a−mc1)− 6bq02

which implies:

2(a−mc1 − bq02)(16a− 16mc1 + 5bq02)

49b
>

2(13a− 13mc1 − 6bq02)ecf

49b
.

The conclusion in this section is similar to the previous. In a congested network (small
q02) or with low expansion costs (ecf sufficiently small), the use of ideal weights will
result in a larger consumer surplus than under Laspeyres weights.

3.4. Consumer Utility

In this subsection we assume that the fixed charges are covered wholly by con-
sumers. The net consumer utility is then defined as the net consumer surplus after
paying the fixed charges from the Transco. For each weight, we get:

16



Laspeyres Weights
with utility:

(a−mc1 + bq02)
2

4b
− (a−mc1 − bq02)q02

if q20 > q̂, and

11ecf 2

98b
− 12

(a−mc1 − bq02)ecf
49b

+
60b2(q02)

2 − 22bq02(a−mc1) + 11(a−mc1)2

49b

if q20 < q̂.

Ideal Weights
with utility:

−ecf
2

4b
+

(a−mc1 − bq02)ecf
b

− (a−mc1)(a−mc1 − 2bq02)

b
.

Subtracting the net utility under ideal weights from net utility from Laspeyres
weights, we get:

ecf 2

4b
− (a−mc1 − bq02)ecf

b
+

5(a−mc1 − bq02)2

4b
(56)

if q0 > q̂, and

71ecf 2

196b
− 61(a−mc1 − bq02)ecf

49b
+

60(a−mc1 − bq02)2

49b
(57)

if q0 < q̂.
Expression (56) can be rewritten as:

1

4b

[(
ecf − 2(a−mc− bq02)

)2
+ (a−mc1 − bq02)2

]
,

and (57) as

71

196b

[
ecf − 122

71
(a−mc1 − bq02)

]2
+

11

71b
(a−mc1 − bq02)2.

Both expressions are positive. Therefore when consumers have to cover the Transco’s
fixed charges, net utility is greater under Laspeyres weights than under ideal weights.
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3.5. Numerical Example

For our stylized network containing two nodes, one generating sufficient power
but the second lacking, we consider the following:

For simplicity, marginal costs are equal to zero.

Node 2 has a demand function of the form: p(d2) = 10− d2.

The locational price at node 1 is at the marginal-cost level, and the locational
price of node 2 includes congestion charges due to lack of domestic generation
capacity.

The initial capacity of line k012 and net initial injections q02 are equal to 5 MW.

The expansion costs for the Transco are given ky kt12 − kt−1
12 .

The inflation and efficiency factors are ignored in the regulatory constraint (i.e.,
RPI = 0, and X = 0)

The Transco is in principle myopic, attributing equal weights to profits in each
period.

Taking these assumptions into consideration in conjunction with different values for
β and γ we obtain values for fixed charges, consumer surplus, net consumer utility,
and the Transco’s profits. These are summarized in the following tables, where W.L.
denotes the values obtained for Laspeyres weights, and W.I denotes those values
corresponding to ideal weights:

Fixed Charges
β

1 0.9 0.8

γ

1.1 W.L. 35.5549 W.L. 35.5433 W.L. 35.5306
W.I. 100.2250 W.I. 99.9750 W.I. 99.6972

1 W.L. 27.0000 W.L. 27.0000 W.L.27.0000
W.I. 85.5000 W.I. 85.2500 P. I. 84.9722

0.9 W.L. 18.9253 W.L. 18.9395 W.L. 18.9549
W.I. 71.7250 W.I. 71.4750 W.I. 71.1972
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Consumer Surplus
β

1 0.9 0.8

γ

1.1 W.L. 56.7977 W.L. 56.7808 W.L. 56.7622
W.I. 90.2500 W.I. 90.0001 W.I. 89.7229

1 W.L. 56.5000 W.L. 56.5000 W.L. 56.5000
W.I. 90.2500 W.I. 90.0001 W.I. 89.7229

0.9 W.L. 56.1672 W.L. 56.1882 W.L. 56.2109
W.I. 90.2500 W.I. 90.0001 W.I. 89.7229

Consumer Surplus - Fixed Charges
β

1 0.9 0.8

γ

1.1 W.L. 21.2427 W.L. 21.2374 W.L. 21.2310
W.I. -9.9750 W.I. -9.9748 W.I. -9.9742

1 W.L. 29.5000 W.L. 29.5000 W.L. 29.5000
W.I. 4.7500 W.I. 4.7501 W.I. 4.7507

0.9 W.L. 37.2418 W.L. 37.2486 W.L. 37.2559
W.I. 18.5250 W.I. 18.5251 W.I. 18.5257

Transco Profits
β

1 0.9 0.8

γ

1.1 W.L. 69.3513 W.L. 65.5661 W.L. 61.7809
W.I. 100.2250 W.I. 99.4778 W.I. 93.7313

1 W.L. 61.0000 W.L. 57.8000 W.L. 54.6000
W.I. 90.5000 W.I. 85.7503 W.I. 81.0013

0.9 W.L. 53.1515 W.L. 50.4862 W.L. 47.8210
W.I. 76.7250 W.I. 72.8778 W.I. 69.0313

It can be observed that for different combinations of β and γ, there will result higher
fixed charges, higher consumer surplus and higher Transco profits for ideal weights
than for Laspeyres weights. However, when consumers are obligated to pay the en-
tire fixed charge, Laspeyres weights provide a higher consumer net utility than ideal
weights. The values found for this example show little sensitivity to variations in the
discount factor β. However, changes in the efficiency and inflation factors as repre-
sented by γ have more significant effects over fixed charges as well as the particular
surpluses.
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4. Conclusion
In this paper we analyzed the distributive effects resulting from the choice of

weights under the HRV mechanism for network expansion. In this model, a regulated
Transco intertemporally maximizes its profits in a wholesale, perfectly competitive
electricity generation market with locational marginal price FTR auctions.

With the use of certain quantity weights, a regulatory agency establishes a ma-
ximum price for the two-part tariff covered by the Transco. These regulatory restric-
tions allow for a rebalancing of the fixed and variable parts of the tariff in order that
the Transco preserve its own optimum when congestion rents decrease commensurate
to the increase in transmission line capacity. This model also considers the actions
of an independent operator (ISO) who coordinates generation and transmission with
the goal of maximizing social welfare. The purpose of this mechanism is to increase
capacity over congested transmission lines, allowing the transfer of energy from low
cost generation zones to high demand zones with elevated generation costs.

The HRVmodel has been widely studied in the literature. The conclusion has been
reached that the model is appropriate from a theoretical and empirical standpoint and
it has been applied to many geographical zones. However, its distributive efficiency
has been seldom studied and the parameters that affect this are not known. In the
context of this work, the welfare of market participants in a radial network and two
time periods was studied in order to determine the efficiency of Laspeyres or ideal
weights.

As a solution to the lower level problem, it was observed that for both weight
types, the capacities of the single lines chosen by the Transco would be insufficient
to reach the maximum level of social welfare desired by the ISO. For the higher level
problem, a comparison between distinct expressions is exceedingly complex due to
the sophisticated interaction of parameters and variables. However, assuming that
the Transco equally values profits from both periods and is prescient of changes in
inflation and efficiency (just as in the majority of studies and applications cited), one
finds that profits for the Transco are always higher when they choose ideal weights
than when they choose Laspeyres weights. If the network is not congested or the
cost of expansion is sufficiently low, using ideal weights will obtain higher consumer
surpluses and larger fixed costs than using Laspeyres weights. Even though the lat-
ter result does not appear conclusive, when the fixed charges are passed entirely to
consumers, their utility is always higher when choosing Laspeyres weights than using
ideal weights, without taking into account the magnitude of expansion costs or con-
gestion level in a given line. In conclusion, it can therefore be said that if a regulator
aims to favor the Transco she should use ideal weights. However, if the regulator is
more interested in favoring consumers she should choose Laspeyres weights.
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5. Appendices

5.1. Solution to Upper Level Problem: Laspeyres Weights

The first type of weight used in this work was the Laspeyres weight, given by
qw = qt−1. From expressions (13) and (17) we can derive the problem of the Transco:

max
k112,k

2
12

β(p22−p21)(q22−q12)+(1+βγ)(p12−p11)(q12−q02)−βecf k212−(1−β)ecf k112+π0 (58)

where π0 := (γ + βγ2)[(p02 − p01)q02 + F 0N ] + ecfk012.

To solve this problem we replace the results that we found through solving the
lower level problem. We consider the following cases.

Case 1. Suppose that k112, k
2
12 ≤

a−mc1
b

. Then

q12 = k112, p12 = a− bk112, p11 = mc,

q22 = k212, p22 = a− bk212, p21 = mc.

Therefore the objective function takes the form:

π0 − bβk212(k212 − k112)− b(1 + βγ)k112(k
1
12 − q02)− βecf k212 − (1− β)ecf k112 (59)

subject to k212 − k112 ≥ 0. If we associate the multiplier λ to the last constraint, we
get the following Karush Khun Tucker conditions:

k112 : −2bk112 + a−mc1 + bq02 − ecf + β
(
− γb(k112 − q02) + γ(a−mc1 − bk112)− a+

+mc+ bk212 + ecf
)
− λ = 0 (60)

k212 : β(−2bk212 + a−mc1 + bk112 − ecf) + λ = 0 (61)
λ(k212 − k112) = 0 (62)

Subcase 1.1 Let λ > 0, k212 = k112. From these conditions we obtain the system:

−2bk112 + a−mc1 + bq02 − ecf + β
(
− γb(k112 − q02) + γ(a−mc1 − bk112)− a+

+mc+ bk112 + ecf
)
− λ = 0

β(−bk112 + a−mc1 − ecf) + λ = 0
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which when solved gives:

k112 = k212 =
(a−mc1 + bq02)(1 + βγ)− ecf

2b(1 + βγ)
(63)

λ = −β (a−mc1 − bq
0
2 − ecf)(1 + βγ)− ecfβγ
2(1 + βγ)

(64)

It can be seen that λ > 0 if and only if:

q02 >
(a−mc1)(1 + βγ)− ecf(1 + 2βγ)

b(1 + βγ)

Subcase 1.2 Now, take λ = 0, k212 > k112. In this subcase we jointly solve:

−2bk112 + a−mc1 + bq02 − ecf + β
(
− γb(k112 − q02) + γ(a−mc1 − bk112)− a+

+mc+ bk212 + ecf
)
= 0

β(−2bk212 + a−mc1 + bk112 − ecf) = 0

so we found that:

k112 =
2(a−mc1 + bq02)βγ − (a−mc− ecf)β + 2(a−mc+ bq02 − ecf)

b(4− β + 4βγ)
(65)

k212 =
(3a− 3mc+ bq02 − 2ecf)βγ − (a−mc− ecf)β + 3a− 3mc+ bq20 − 3ecf

b(4− β + 4βγ)
(66)

Then
k212 − k112 =

(bq02 − a+mc+ 2ecf)βγ + bq02 − a+mc+ ecf

b(4− β + 4βγ)

The last expression is positive if and only if:

q02 <
(a−mc1)(1 + βγ)− ecf(1 + 2βγ)

b(1 + βγ)

As a consequence of what we have found so far, in this first case the resulting capaci-
ties in the transmission line, as well as the surplus of participants and fixed charges,
will depend on the magnitude of q02.

The benefit to the Transco for this first case would then be:

π = π0 +
ecf 2

4b(1 + βγ)
− (a−mc1 + bq02)ecf

2b
+

(a−mc1 − bq02)2(1 + βγ)

4b
(67)

22



if q02 >
(a−mc1)(1 + βγ)− ecf(1 + 2βγ)

b(1 + βγ)
, or

π = π0 +
(1 + β2γ)ecf 2

b(4 + 4βγ − β)
− [(a−mc)(2 + 2βγ + β2γ) + b(2− β)(1 + βγ)q02]ecf

b(4 + 4βγ − β)

+
(a−mc1 − bq02)2(1 + βγ)2

b(4 + 4βγ − β)
(68)

if q02 <
(a−mc1)(1 + βγ)− ecf(1 + 2βγ)

b(1 + βγ)
.

Case 2. Suppose that k112 ≤
a−mc1

b
, k212 ≥

a−mc1
b

. Then

q12 = k112, p12 = a− bk112, p11 = mc1

q22 =
a−mc1

b
, p22 = mc1, p21 = mc1.

The objective function of the upper level problem is

(a−bk112−mc1)k112−(a−bk112−mc)q02−ecfk112+β
(
γ(a−bk112−mc1)(k112−q02)−ecf(k212−k112)

)
+π0

(69)
Since this function is linear in k212 with a negative coefficient, we take

k212 =
a−mc1

b
. (70)

The first order condition for k112 is:

k112 : −2bk112 + a−mc1 + bq02 − ecf + β
(
− γb(k112 − q02) + γ(a− bk112 −mc) + ecf

)
= 0

(71)

which implies:

k112 =
(a−mc1 + bq02)(1 + βγ)− ecf(1− β)

2b(1 + βγ)
(72)

Substituting into the objective function the capacities previously found, the benefits
to the Transco in this case are:

π = π0 +
(1− β)2ecf 2

4b(1 + βγ)
− [(a−mc)(1 + β) + b(1− β)q02]ecf

2b
+

+
(a−mc− bq02)2(1 + βγ)

4b
(73)
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Case 3. Finally, let k112, k
2
12 ≥

a−mc1
b

. Then

q12 =
a−mc1

b
, p12 = mc1, p11 = a,

q22 =
a−mc1

b
, p22 = mc1, p21 = a.

In this case we maximize the expression

− ecfk112 − βecf(k212 − k112) + π0 (74)

which can be rewritten as −ecf(1− β)k112 − ecfβk212 + π0. Since this is linear in k112
y k212, we choose

k112 = k212 =
a−mc1

b
(75)

Then the benefits of the Transco are

π = π0 −
ecf(a−mc1)

b
. (76)

Ultimate Solution
This solution is chosen among three different analyzed cases. The solution will be
the case that yields higher benefits for the Transco. Then, we compare our results
summarized in equations (67), (68), (73) and (76).
First compare the results for cases 2 and 3. From (73) we have that benefits for case
2 are:

π = π0 +
(1− β)2ecf 2

4b(1 + βγ)
− [(a−mc1)(1 + β) + b(1− β)q02]ecf

2b
+

+
(a−mc1 − bq02)2(1 + βγ)

4b

= π0 +
(1− β)2ecf 2

4b(1 + βγ)
+

(1− β)(a−mc1 − bq02)ecf
2b

+

+
(a−mc1 − bq02)2(1 + βγ)

4b
− (a−mc1)ecf

b

= π0 +

[
(1− β)ecf + (a−mc1 − bq02)(1 + βγ)

]2
4b(1 + βγ)

− (a−mc1)ecf
b

(77)
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From (76), by choosing capacities according to case 3,the Transco receives

π = π0 −
(a−mc1)ecf

b

Clearly, the Trasco always prefers alternative 2 to 3. Now we compare alternatives 1
and 2 in terms of capacities.

First, assume q02 >
(a−mc1)(1 + βγ)− ecf(1 + 2βγ)

b(1 + βγ)
.

Now subtract the profits in case 1 given by (67) to the profits in case 2 expressed
in(73):[

π0 +
(1− β)2ecf 2

4b(1 + βγ)
− [(a−mc1)(1 + β) + b(1− β)q02]ecf

2b
+

(a−mc1 − bq02)2(1 + βγ)

4b

]
−[

π0 +
ecf 2

4b(1 + βγ)
− (a−mc1 + bq02)ecf

2b
+

(a−mc1 − bq02)2(1 + βγ)

4b

]
=

−β(2− β)ecf
2

4b(1 + βγ)
− (a−mc− bq02)βecf

2b
< 0.

It follows that option 1 is preferred to option 2.

Now, let q02 <
(a−mc1)(1 + βγ)− ecf(1 + 2βγ)

b(1 + βγ)
.

Again, subtract the profits in case 1 given by (68) to profits in case 2 expressed in
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equation (73):[
π0 +

(1− β)2ecf 2

4b(1 + βγ)
− [(a−mc1)(1 + β) + b(1− β)q02]ecf

2b
+

(a−mc1 − bq02)2(1 + βγ)

4b

]
−[

π0 +
(1 + β2γ)ecf 2

b(4 + 4βγ − β)
− [(a−mc)(2 + 2βγ + β2γ) + b(2− β)(1 + βγ)q02]ecf

b(4 + 4βγ − β)
+

+
(a−mc1 − bq02)2(1 + βγ)2

b(4 + 4βγ − β)

]
=

−β(2βγ − β + 3)2ecf 2

4b(4 + 4βγ − β)
− β(a−mc1 − bq02)(2βγ − β + 3)ecf

2b(4 + 4βγ − β)
−

β(a−mc1 − bq02)2(1 + βγ)

4b(4 + 4βγ − beta)
=

−
β
[
(2βγ − β + 3)ecf + (a−mc1 − bq02)(1 + βγ)

]2
4b(4 + βγ − β)(1 + βγ)

< 0.

Then, the Transco always chooses option 1 over option 2. In conclusion, optimally
chosen capacities in the upper level problem are given by:

k112 =


(a−mc1 + bq02)(1 + βγ)− ecf

2b(1 + βγ)
if q02 > q̂

2(a−mc1 + bq02)βγ − (a−mc− ecf)β + 2(a−mc+ bq02 − ecf)
b(4− β + 4βγ)

in other case

(78)

k212 =


(a−mc1 + bq02)(1 + βγ)− ecf

2b(1 + βγ)
if q02 > q̂

(3a− 3mc+ bq02 − 2ecf)βγ − (a−mc− ecf)β + 3a− 3mc+ bq20 − 3ecf

b(4− β + 4βγ)
in other case

(79)

where q̂ =
(a−mc1)(1 + βγ)− ecf(1 + 2βγ)

b(1 + βγ)
.

With fixed charges accordingly defined as:

F 1N = γ[(p02 − p01)q02 + F 0N ]− (a− bk112 −mc1)q02 (80)

F 2N = (γ)2
[
(p02 − p01)q01 + F 0N

]
+ γ(a− bk112 −mc1)(k112 − q02)− (a− bk212 −mc)k112

(81)
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5.2. Finding the Ideal Weight

In order to find the ideal weight for our two-period radial network, we must solve
the problem

max
qt2,k

t
12

2∑
t=1

∫ qt2

0

(a− bq̃t2) dq̃t2 −
2∑

t=1

mc1q
t
2 −

2∑
t=1

ecf(kt12 − kt−1
12 ) (82)

subject to:

qt2 ≤ gt,max
1 t = 1, 2 (83)

qt2 ≤ kt12 t = 1, 2 (84)
k112 ≤ k212. (85)

To avoid wasting resources, it must be true that qt2 = kt12. Then, assuming sufficient
generating capacity at node 1, the problem is rewritten as:

max
qt2,k

t
12

2∑
t=1

∫ qt2

0

(a− bq̃t2) dq̃t2 −
2∑

t=1

(mc1 + ecf)qt2 +
2∑

t=1

ecfqt−1
2 (86)

subject to
q12 ≤ q22. (87)

If we associate the multiplier µ to the latter restrictions, the KKT conditions of the
problem are:

q12 : a− bq12 − (mc1 + ecf) + ecf − µ = 0 (88)
q22 : a− bq22 − (mc1 + ecf) + µ = 0 (89)

µ(q22 − q12) = 0. (90)

First, suppose that µ > 0; q12 = q22.
We obtain the system:

a− bq12 −mc1 − µ = 0

a− bq12 −mc1 − ecf + µ = 0

then

q12 = q12 =
2(a−mc1)− ecf

2b
(91)

µ =
ecf

2
> 0. (92)
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Now consider the case µ = 0; q12 < q22.
Now the system to be solved is:

a− bq12 −mc1 = 0

a− bq22 −mc1 − ecf = 0

solving this system yields:
q12 =

a−mc1
b

(93)

q22 =
a−mc1 − ecf

b
(94)

but
q22 − q11 = −ecf

b
< 0

so that we may discard this second case.
In conclusion, the ideal weight is then given by

q∗ =
2(a−mc1)− ecf

2b
. (95)

5.3. Solution to the Upper Level Problem: Ideal Weights

The second type of weight that we consider in this paper are ideal weights. An
ideal weight q∗ is the level of q that prevails in the steady (Ramsey-Boiteux) state. In
our network we found that the ideal weight is given by q∗ = 2(a−mc1)−ecf

2b
. In order to

solve the upper level problem for this type of weight we will again consider various
cases given the variety of choices in the lower level problem. The problem to be
solved:

max
kt12

(p12 − p11)q12 −
(p12)(2a− 2mc1 − ecf)

2b
− ecfk112 + β

(
(p22 − p21)q22 −

−(p22)(2a− 2mc1 − ecf)
2b

− ecf(k212 − k112)

)
+ π∗

0 (96)

where π∗
0 := (γ + βγ2)

[
(p02 − p01)q∗ + F 0N

]
+ ecfk012.
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Case 1. Suppose that the Transco chooses k112, k
2
12 ≤

a−mc1
b

. As before, we have
that

q12 = k112, p12 = a− bk112, p11 = mc,

q22 = k212, p22 = a− bk212, p21 = mc.

The objective function is now given by:

(a− bk112)k112 −
(a− bk112 −mc1)(2a− 2m− ecf)

2b
− ecfk112 + β

(
(a− bk212 −mc1)k212 −

(a− bk212 −mc1)(2a− 2m− ecf)
2b

− ecf(k212 − k112)

)
+ π∗

0 (97)

The Karush-Khun-Tucker conditions for this problem are:

k112 : −2bk112 + 2a− 2mc1 −
3ecf

2
+ βecf − λ = 0 (98)

k212 : β

(
−2bk212 + 2a− 2mc− 3ecf

2

)
+ λ = 0 (99)

λ(k212 − k112) = 0 (100)

Subcase 1.1. Let λ > 0; k112 = k212, from the first order conditions we get:

−2bk112 + 2a− 2mc1 −
3ecf

2
+ βecf − λ = 0 (101)

β

(
−2bk112 + 2a− 2mc− 3ecf

2

)
+ λ = 0 (102)

whose solution is:
k112 = k212 =

a−mc1
b

− (3 + β)ecf

4b(1 + β)
(103)

λ =
ecfβ2

1 + β
(104)

Subcase 1.2 Assume λ = 0; k212 > k112. We get the equations:

k112 : −2bk112 + 2a− 2mc1 −
3ecf

2
+ βecf = 0 (105)

k212 : β

(
−2bk212 + 2a− 2mc− 3ecf

2

)
= 0 (106)
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therefore

k112 =
a−mc1

b
− (3− 2β)ecf

4b
(107)

k212 =
a−mc1

b
− 3ecf

4b
, (108)

so that
k212 − k112 = −

βecf

2b
< 0

so that we may discard this first case..
The profits for the Transco in this case are given by:

π = π∗
0 +

(3 + β)2ecf 2

16b(1 + β)
− ecf(a−mc)

b
(109)

Case 2. Now, let’s see what happens when the Transco chooses k112 ≤
a−mc

b
and

k112 ≥
a−mc

b
. We get

q12 = k112, p12 = a− bk112, p11 = mc1

q22 =
a−mc1

b
, p22 = mc1, p21 = mc1.

The objective function of the upper level problem is

(a− bk112 −mc1)k112 −
(a− bk112 −mc1)(2a− 2mc1 − ecf)

2b
− ecfk112 − βecf(k212 − k112) + π∗

0

(110)

As this function is linear in k212, we choose

k212 =
a−mc1

b
(111)

For k112, we have the first order condition:

k112 : −2bk112 + 2a− 2mc1 −
3ecf

2
+ βecf = 0 (112)

Then

k112 =
a−mc1

b
− (3− 2β)ecf

4b
(113)
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substituting these values for k112 and k212 in the objective function, we find that the
profits obtained by the Transco are given by:

π = π∗
0 +

(3− 2β)2ecf 2

16b
− ecf(a−mc1)

b
. (114)

Case 3. Consider one last option: k112, k
2
12 ≥

a−mc1
b

. From the lower level problem,
we have:

q12 =
a−mc1

b
, p12 = mc1, p11 = a,

q22 =
a−mc1

b
, p22 = mc1, p21 = a.

then, we must maximize:

− ecfk112 − βecf(k212 − k112) + π∗
0 (115)

Therefore, the best choice is to take

k212 = k212 = (a−mc1)/b (116)

yielding profits

π = π∗
0 −

ecf(a−mc1)
b

(117)

Ultimate solution
As before, we now compare in terms of capacity the Transco’s profits under the
above three cases. It is straightforward to see that the third option will never occur.
It then only remains to compare cases 1 and 2. Subtracting profits in case 1 to those
obtained in case 2, we get:

[
π∗
0 +

(3− 2β)2ecf 2

16b
− ecf(a−mc1)

b

]
−

[
π∗
0 +

(3 + β)2ecf 2

16b(1 + β)
− ecf(a−mc)

b

]
=

(3− 2β)2ecf 2

16b
− (3 + β)2ecf 2

16b(1 + β)
=

−β(4β + 3)(3− β)ecf 2

16b(1 + β)
< 0.
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Therefore, the Transco would prefer case 1 and its optimal choices are given by:

k112 = k212 =
a−mc1

b
− (3 + β)ecf

4b(1 + β)
(118)

F 1N = γ
[
(p02 − p01)q∗ + F 0N

]
− (a− bk112 −mc1)q∗ (119)

F 2N = (γ)2
[
(p02 − p01)q∗ + F 0N

]
− (a− bk212 −mc1)q∗ (120)
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